Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks

نویسندگان

چکیده

Researchers often treat data-driven and theory-driven models as two disparate or even conflicting methods in travel behavior analysis. However, the are highly complementary because more predictive but less interpretable robust, while robust predictive. Using their nature, this study designs a theory-based residual neural network (TB-ResNet) framework, which synergizes discrete choice (DCMs) deep networks (DNNs) based on shared utility interpretation. The TB-ResNet framework is simple, it uses (?, 1-?) weighting to take advantage of DCMs’ simplicity DNNs’ richness, prevent underfitting from DCMs overfitting DNNs. This also flexible: three instances TB-ResNets designed multinomial logit model (MNL-ResNets), prospect theory (PT-ResNets), hyperbolic discounting (HD-ResNets), tested data sets. Compared pure DCMs, provide greater prediction accuracy reveal richer set behavioral mechanisms owing function augmented by DNN component TB-ResNets. DNNs, can modestly improve significantly interpretation robustness, DCM stabilizes functions input gradients. Overall, demonstrates that both feasible desirable synergize DNNs combining specifications under framework. Although some limitations remain, an important first step create mutual benefits between for modeling, with joint improvement prediction, interpretation, robustness.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Choice by Elimination via Deep Neural Networks

We introduce Neural Choice by Elimination, a new framework that integrates deep neural networks into probabilistic sequential choice models for learning to rank. Given a set of items to chose from, the elimination strategy starts with the whole item set and iteratively eliminates the least worthy item in the remaining subset. We prove that the choice by elimination is equivalent to marginalizin...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transportation Research Part B-methodological

سال: 2021

ISSN: ['1879-2367', '0191-2615']

DOI: https://doi.org/10.1016/j.trb.2021.03.002